The MSDLab is very active in the development of 2-D sparse arrays, which have been shown to be a feasible option for the implementation of 3-D imaging/Doppler systems. These arrays, designed to have a number of active elements equal to the number of channels available in a companion scanner, represent a cheaper alternative to the very expensive full 2-D arrays used by few high-end scanners. Specifically, the MSDLab developed methods for the optimal design of the 2-D sparse layouts and collaborated in the realization of prototypes based on both piezoelectric and capacitive micromachined ultrasound transducer (CMUT) technologies
Further details can be found in:
[1] B. Diarra, M. Robini, P. Tortoli, C. Cachard, and H. Liebgott, “Design of Optimal 2-D Nongrid Sparse Arrays for Medical Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 11, pp. 3093–3102, Nov. 2013, doi: 10.1109/TBME.2013.2267742.
[2] A. Ramalli, E. Boni, A. S. Savoia, and P. Tortoli, “Density-tapered spiral arrays for ultrasound 3-D imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 8, pp. 1580–1588, Aug. 2015, doi: 10.1109/TUFFC.2015.007035.
[3] E. Roux, A. Ramalli, P. Tortoli, C. Cachard, M. C. Robini, and H. Liebgott, “2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 12, pp. 2138–2149, Dec. 2016, doi: 10.1109/TUFFC.2016.2602242.
[4] E. Roux, A. Ramalli, H. Liebgott, C. Cachard, M. C. Robini, and P. Tortoli, “Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 1, pp. 108–125, Jan. 2017, doi: 10.1109/TUFFC.2016.2614776.
[5] A. S. Savoia et al., “A 3D packaging technology for acoustically optimized integration of 2D CMUT arrays and front end circuits,” in 2017 IEEE International Ultrasonics Symposium (IUS), Sep. 2017, pp. 1–4, doi: 10.1109/ULTSYM.2017.8092991.
[6] E. Boni, A. Ramalli, V. Daeichin, N. de Jong, H. J. Vos, and P. Tortoli, “Prototype 3D Real-Time Imaging System Based on a Sparse PZT Spiral Array,” in 2018 IEEE International Ultrasonics Symposium (IUS), Oct. 2018, pp. 1–4, doi: 10.1109/ULTSYM.2018.8580133.
[7] E. Roux, F. Varray, L. Petrusca, C. Cachard, P. Tortoli, and H. Liebgott, “Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves,” Scientific Reports, vol. 8, no. 1, p. 9108, Jun. 2018, doi: 10.1038/s41598-018-27490-2.
[8] H. J. Vos et al., “Sparse Volumetric PZT Array with Density Tapering,” in 2018 IEEE International Ultrasonics Symposium (IUS), Oct. 2018, pp. 1–4, doi: 10.1109/ULTSYM.2018.8580197.
[9] A. S. Savoia et al., “A 256-Element Spiral CMUT Array with Integrated Analog Front End and Transmit Beamforming Circuits,” in 2018 IEEE International Ultrasonics Symposium (IUS), Oct. 2018, pp. 206–212, doi: 10.1109/ULTSYM.2018.8579867.
[10] S. Harput et al., “3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 2, pp. 269–277, Feb. 2020, doi: 10.1109/TUFFC.2019.2943646.
[11] P. Mattesini, A. Ramalli, L. Petrusca, O. Basset, H. Liebgott, and P. Tortoli, “Spectral Doppler Measurements With 2-D Sparse Arrays,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 2, pp. 278–285, Feb. 2020, doi: 10.1109/TUFFC.2019.2944090.
[12] A. Ramalli et al., “High-Frame-Rate Tri-Plane Echocardiography With Spiral Arrays: From Simulation to Real-Time Implementation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 1, pp. 57–69, Jan. 2020, doi: 10.1109/TUFFC.2019.2940289.
[13] A. Ramalli et al., “Real-time 3-D Spectral Doppler Analysis with a Sparse Spiral Array,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. early access, 2021, doi: 10.1109/TUFFC.2021.3051628.